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Abstract—We introduce an effective computational method, based on an interaction integral,
to evaluate elastic 7-stress along three-dimensional crack fronts. Using this technique, 7-stress
distributions of various three-dimensional geometries are determined from finite element calcu-
lations. The computed results show that the through-thickness variation of 7-stress along the crack
front of edge-cracked plates is relatively small under both tension and bending load conditions. The
deviation from the corresponding two-dimensional results increases with increasing relative crack
length and with decreasing relative plate thickness. The increase in T-stress with decreasing thickness
results from the inherent positive biaxiality of thin elastic plates. Furthermore, the value of three-
dimensionally computed T-stress in these through-crack geometries increases with increasing
Poisson’s ratio. The T-stress distribution is also calculated along the curved crack front of a
surface-flawed plate. For the particular geometry considered, the maximum 7-stress along the
crack front is located at the mid-point of the crack front, and there is a greater variation of T-stress
along the crack front under bending loads than in tension.

1. INTRODUCTION

The so-called T-stress, or second term of the Williams (1957) series expansion for linear
elastic crack-tip fields, has found many uses in fracture mechanics applications. Larsson
and Carlsson (1973) and Rice (1974) showed that the sign and magnitude of the T-stress
(relative to Kj/./ma) substantially altered the size and shape of the plane strain crack-tip
plastic zone at finite load levels corresponding to the ASTM limit of 2.5 (K;/a,)? less than
or equal to crack size, ligament length, etc., where g is tensile yield strength.

Cotterell and Rice (1980) showed how the sign of the T-stress determines the stability
of straight-ahead mode I cracking; cracks with T" < 0 are stable in this mode while those
having 7 > 0 are prone to curve off the initial crack plane.

Bilby et al. (1986) showed that the T-stress can strongly affect the magnitude of
hydrostatic triaxiality in the very near tip elastic—plastic fields of a non-hardening material.
More recently, Hancock and co-workers (Al-Ani and Hancock, 1991; Betegon and
Hancock, 1991 ; Du and Hancock, 1991) have shown that the T-stress, in addition to the
J-integral, provides a practical two-parameter characterization of plane strain elastic—plastic
crack-tip fields in a variety of crack configurations and loadings. The important feature
emerging from these works is that negative T-stress values can substantially reduce levels
of crack-tip stress triaxiality, even under conditions of contained plastic flow, with larger
reductions in triaxiality as T becomes more negative. The efficacy of this methodology in
accurately describing crack-tip fields has also been demonstrated by O’Dowd and Shih
(1991, 1992) in plane strain and by Parks and Wang (Parks, 1991a; Wang and Parks, 1990;
Wang, 1991) in three-dimensional surface-cracked geometries. In short, these recent studies
indicate that the value of the elastic T-stress, along with the J-integral or other measure of
the scale of crack-tip deformation (e.g. CTOD), can provide exceptional improvement in
the ability to describe local crack-tip stress triaxiality on the scale of fracture process zone
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size (i.e. at distances from the tip of the order J/o, or CTOD), as compared to any single-
parameter crack-tip description.

In order for the potential benefits of such an improved resolution in describing crack-
tip fields to be realized in improved fracture mechanics analyses of engineering applications,
much work is required in the construction and interpretation of experiments, and in
micromechanics modeling of fracture (Parks, 1991b). However, an important basis for such
a two-parameter fracture mechanics methodology rests upon the ability to calculate T-
stress in essentially arbitrary crack configurations with relatively small levels of effort.

Two-dimensional studies (Larsson and Carlsson, 1973; Leevers and Radon, 1983;
Cardew et al., 1984 ; Kfouri, 1986; Sham, 1991) have shown that the 7-stress depends
strongly on the type of loading as well as on the relative crack length and overall geometry.

In the context of two-dimensional traction boundary problems in isotropic elasticity,
the T-stress is independent of material elastic properties, as well as being independent of
plate thickness (i.e. plane strain and plane stress T-values coincide). These features should
not necessarily be expected within a three-dimensional context, but existing three-dimen-
sional studies of the T-stress are far less extensive. Wang and Parks (1990) evaluated T-
stress distributions along semi-elliptical surface crack fronts by subtracting the dominant
singular terms from very detailed three-dimensional finite element solutions, as well as by
developing simplified evaluations of T-stress distributions based on the line-spring model.
Wang (1991) used these T-stress distributions in quantitatively predicting the varying
triaxiality of elastic—plastic crack front-stress-fields-in-shallow and deep surface crack
geometries subjected to both tension and bending loading.

Here we develop a general computationally-effective method for extracting T-stress
distributions along three-dimensional crack fronts from moderately detailed finite element
solutions ; two-dimensional and axisymmetric geometries emerge as special cases. The
method, based on an interaction integral, generalizes a two-dimensional method for T-
stress evaluation given by Kfouri (1986). Computational implementation of the method is
based on standard domain integral techniques. Several applications of the method illustrate
some inherently three-dimensional aspects of the T-stress, including dependence on the
Poisson ratio and relative plate thickness.

2. EXTRACTION OF T ALONG A THREE-DIMENSIONAL CRACK FRONT

2.1. Near tip field and line-load solutions

In an isotropic linear elastic body containing a crack subject to symmetric (mode I)
loading, the leading terms [up to order ¢(1)] in a series expansion of the stress field very
near the crack front are

K 0 .6 30 K, ) .0 . 30
0, =——cos- | l—sinzsin— |+ 7, 0,, =——-=cos-| I+sinzsin—
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where r and 0 are the in-plane coordinates of the plane normal to the crack front, KX is the
local stress intensity factor, and v is the Poisson’s ratio. Here x, is the direction formed by
the intersection of the plane normal to the crack front and the plane tangential to the crack
plane. The terms T (=T),,) and T; are the amplitudes of the second order terms in the
three-dimensional series expansion of the crack front stress field in the x; and x, directions,
respectively. Under general loading conditions, there may also be a constant T,;-term
present (Parks, 1991a), but we do not consider this case further. For later use, we find it
convenient to additively decompose the stress component 7’5, into the form T3, = a*+vT.
This permits the identification of o* with a state of simple tension tangent to the crack front
causing crack front extensional strain £;; = ¢*/E and Poisson contractions —ve*/E in the
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x; and x, directions. (Here E is Young’s modulus.) Under two-dimensional plane strain
conditions (¢33 = 0), we have ¢* = 0.

For the purpose of extracting the T-stress distribution along the crack front of a
stressed body, we make use of an auxiliary solution corresponding to a plane strain line-
load applied along the crack front. The solution is the special case of a line-load sym-
metrically applied at the apex of a wedge of included angle 2x (Timoshenko and Goodier,
1970). Suppose that a line-load with magnitude f (force per unit length) in the x, direction
is locally applied along the same crack front segment. Then the stress field in the crack-tip
region is given by

f

oY%, = ~cos®6, &5, =-cosfsin?f, o553 = —vcosh
wr r wr

O']fz = %COSZ GSin 0, O'lfg, = 0'12'3 = 0. (2)

Here, the superscript “L” designates the field as that of the line-load solution. The stress
field (2) also admits compatible strain (¢5) and displacement (u)) fields. The above solutions
are valid at any material point as long as r, its radial distance to the crack front, is sufficiently
small compared to other relevant physical dimensions (e.g. crack front radius of curvature,
distance to free surface, etc.).

2.2, Interaction integral

In order to extract the elastic 7-term, an interaction integral is introduced. The inter-
action integral shown here is similar to that used to evaluate mixed-mode stress intensity
factors along a three-dimensional crack front (Nakamura and Parks, 1989).

We begin by considering the line-load, f; = fi,(s), to be applied along the crack front
as shown in Fig. 1(a). In the figure, 5 is an arc-length measuring parameter representing
the location of the crack-tip on the crack front, and u,(s) is a unit vector giving the direction
formed by the intersection of the plane normal to the crack front and the plane tangential

crack front
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Fig. 1. (a) Line-load applied in the direction of crack advance along the crack front. (b) Crack tip
contour I’ on the plane locally perpendicular to the crack front where s represents the location of
the crack tip. (¢) Volume ¥ which encloses the crack front segment where Iis evaluated.
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to the crack front at s. Suppose we superimpose the near tip field (1) with the field due to
the line-load application (2). We can introduce a local conservation integral as

I(s) = lim p(s) o Esn -a--%- "6 dr. &)
R I N E A

Here, a path I" where the integral is evaluated surrounds the crack front at s and lies in the
plane perpendicular to the crack front at 5. The components #; are those of a unit vector,
lying in this plane and normal to the tangent to I', as shown in Fig. 1(b). Note that the
limit (I’ = 0) must be preserved in three-dimensional problems. However, the shape of
the path may be arbitrary as I shrinks onto the tip.

Now suppose that u,(s) is given in the local x, direction and that the path I' is circular
with radius 7. Then as the limit is taken (r — 0), the stress fields in (1) and (2) (and their
associated kinematic fields) become applicable in the integrand. After substituting these
fields into the integral and performing tedious but routine algebra, the interaction integral
may be evaluated as

19 = Lo - v @

In the integration, the terms in the crack-tip fields (1) containing K cancel out exactly, and
only the non-singular terms in (1) contribute to I(s). Using the relation a*(s) = Eg;1(s)
noted above, and solving for T(s), we obtain,

T(s) = () +vess(9)]. &)

E
f1=v?)

Under two-dimensional plane strain conditions, &, = 0, and the formulation leading to (5)
is similar to that given by Kfouri (1986). Finally, if we evaluate (3) using the computed
stress (o) and deformation (») field of a boundary value problem and the exact auxiliary
solution of the line-load (2), with unit magnitude (f = 1), then the local value of 7T-stress
at the crack front point s in the boundary value problem can be determined.

In numerical analyses, the expression (3) is not suitable for evaluating I{s) since
accurate numerical evaluation of limiting fields along the crack front is difficult. Here the
so-called “‘domain integral formulation™ (Li et al., 1985 ; Shih et al., 1986) is adopted. With
the aid of the spatial weighting function, ¢,, and the divergence theorem, the integral over
a domain/volume is,

Is) = f 4 () (sHI(s) ds’

_ ouf L ou; \ 0g, 6qk
g L e s ©

Here V(s) is a volume which encloses the crack front segment bounded by s—¢ and s+¢
as shown in Fig. 1(c). In a finite element model, the distance ¢ is usually taken as the length
of element layer adjoining the crack front. An appropriate generalization of (6), applicable
to cases for which body force and thermal strain are present, is given in the Appendix. A
simple approximation to 7 is obtained by assuming that its variation is nearly linear within
the segment. Then its centroidal value can be calculated as,
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1(s) = I(s) / f () i) ds’. ™

More detailed and consistent procedures for determining I(s) exist. However our com-
putational experiences have shown that the approximate method of (7) provides preferable
results for the analysis when the accuracy of I cannot be uniformly obtained along the
entire crack front; i.e. when very steep gradients in /(s) exist, as occurs near the intersection
of a crack front with a free surface. This discussion of finite element implementation of
domain integral methods is brief ; more details can be found in Nakamura and Parks (1989)
and in Li et al. (1985).

3. SINGLE EDGE-CRACKED PLATES

3.1. Model

For the initial three-dimensional model, a single edge-cracked plate (ECP) containing
a straight through-crack is considered. The specimen is subjected to either remote tension
or bending as shown in Fig. 2. For the tension case, a constant normal stress ¢ is applied
on the end planes of the plate. For the bending case, a linearly-varying tensile stress, with
the largest value (maximum bending stress) 6%, is applied on the top and bottom planes.
In the model, the ratio of half-height, H, to the width, W, is chosen to be H/W = 2. Two
families of geometries are considered, through variations in crack length, a, and plate
thickness, ¢. The Poisson’s ratio varies over the range 0 < v < 0.499. The coordinates are
chosen so that x, is in the crack advance direction, x, is in the axial direction of the plate
and the x; axis is the crack front. The origin is located at the mid-point of the crack front.

In constructing the finite element mesh, we have used the symmetry conditions across
the mid-plane (x;/t = 0) and the crack and ligament plane (x,/t = 0). Different meshes
are used for geometries with different crack lengths and thickness. In all our models, the
element size is gradually decreased as the radial distance to the crack front decreases, while
the angular increment of each mesh is kept constant in the crack front region. The identical
planar mesh is repeated along the x, axis. Since a high stress gradient along the crack front
is expected near the free-surface, thinner elements are employed away from the mid-plane.
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Fig. 2. Schematic of three-dimensional single edge-cracked plate under (a) tension and (b) bending.
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The number of element layers through the half-thickness is 8. A total of approximately
1200 20-noded three-dimensional quadratic elements with reduced integration (2x2x2)
are used to construct the quarter-model.

3.2. Effects of Poisson’s ratio

In contrast to the case of two-dimensional (plane strain or plane stress) traction
boundary value problems, in three dimensions the local T-stress is influenced by the value
of Poisson’s ratio. {Three-dimensional distributions of stress intensity factor also depend
on v in these geometries.) Using an ECP with fixed geometry given by (a/W = 0.5,
t/W = 0.5), several computations were carried out for different Poisson’s ratios under both
tension and bending. In determining the T-stress from the finite element solution, I is
computed over several domains/volumes enclosing each crack front node. Then the average
value is taken and 7 is obtained from (7). Finally, the relation (5) is used to calculate T
from I and &;, at the crack front node.

Before discussing the numerical results, we note that the accuracy of T is influenced
by several factors. First, in cases when the interaction integral is positive, T is calculated
from the difference in the magnitudes of |7| and |g;,|, since ¢;; is usually negative along the
crack front. This could be a potential source of significant error, especially when the
difference of the terms is small compared to their magnitude. Next, in this analysis, £;4(s)
at a crack front node is obtained from the tangential displacement components at neigh-
boring crack front nodes using the quadratic shape functions. This method requires a very
small element (in the r direction) along the crack front to compute a sufficiently accurate
value for ¢;;. In our computations, the radius of the first ring of elements wrapped about
the crack front, r;,, always satisfied r,;, < 0.001 x /, where / = min [a, W—a, 1]. We expect
that this provides estimates of ¢;; which are accurate to 2~ 3% of the exact value. However,
when the magnitude of &,; is very large, such as near the intersection of the crack front
with a free-surface, the accuracy with which ¢;, is computed must deteriorate. Moreover,
at such locations, we might expect that (corner) singular values of &;; would cause [ to
diverge.

The T-stress along the half-crack front, normalized by ¢®, is shown in Fig. 3. Figure
3(a) shows the results from the tension case. For each Poisson’s ratio, the through-thickness
variation remains small except in the region near the free-surface, x,/t > 0.4. The T~
stress increases essentially uniformly across the crack front with increasing Poisson’s ratio,
becoming positive for a nearly incompressible plate. The case of v = 0 is equivalent to the
two-dimensional solution (plane strain and plane stress conditions). Near the mid-plane
(x3/t = 0), there is a difference of approximately ¢*/2 between the T-stress for the cases
v =0.499 and v = 0 [or the two-dimensional solution; Sham (1991)]. The results of the
bending case are shown in Fig. 3(b). The T-stress distributions are similar to those of
tension, except all the values are positive, and the sensitivity to the value of Poisson’s
ratio is somewhat smaller.

3.3. Various crack lengths

Next, the effects of crack length are studied by computing mid-plane T-stress values
for various relative crack depths ranging from 0.1 < a/W < 0.7. The relative thickness of
the plate and the Poisson’s ratio are fixed at /W = 0.5 and v = 0.3, respectively. The 7-
stress is normalized by ¢* in Fig. 4(a) and by KI/\/ﬂz in Fig. 4(b), the latter being a
normalization more commonly used in two-dimensional studies. The normalizing stress
intensity factor K| is the local value at mid-plane, as computed independently from three-
dimensional domain integral evaluation of the crack-front distribution of J. This method
has been successfully employed in many three-dimensional analyses [see, for example,
Nakamura and Parks (1989)]. Both tension and bending cases show increasing 7-stress at
mid-plane for longer crack lengths. This trend has been used extensively by Al-Ani and
Hancock (1991) in explaining systematic variations in elastic—plastic crack-tip constraint
for plane strain edge-cracks of varying depths under tension and bending. As compared to
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Fig. 3. Variation of normalized T-stress along the crack front of an edge-cracked plate for various
Poisson’s ratios under (a) tension and (b) bending.

the corresponding two-dimensional solutions (Sham, 1991), the three-dimensional nor-
malized T-stress values are always slightly higher, except for the shallow cracks
(a/W < ~ 0.2) under bending when T is normalized by ¢®.

3.4. Effects of plate thickness

The effect of the relative plate thickness on the three-dimensional 7-stress distributions
is studied by using finite element models having similarly-arranged in-plane meshes, but
with differing plate thicknesses. The radial extent of the elements adjacent to the crack front
is kept sufficiently small relative to the thickness. The models were subjected to in-plane
loading uniformly distributed through the thickness. For this analysis, the relative crack
depth and Poisson ratio are fixed at a/W = 0.5 and v = 0.3, respectively, and the straight
crack front intersects the free-surfaces orthogonally.

Before discussing the numerical results, we note that in problems of this sort, the local
stress intensity factor K, in general varies along the crack front. When thickness ¢ becomes
large compared to in-plane dimensions (e.g. crack length g), this variation should approach

K]()Cg/t, V) = I<l2D as t/a — 0, (8)

where K?® is the plane strain stress intensity factor for this in-plane geometry and load per
unit thickness. In this case, the stress intensity factor is uniform except in the small region
near the free-surfaces (|x,/t] = 0.5) where the corner field prevails and K; must vanish
{(Nakamura and Parks, 1988). As thickness becomes small with respect to in-plane dimen-
sions, the stress intensity factor distribution for a thin plate tends to
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Fig. 4. Mid-plane value of T-stress as a function of crack length in edge-cracked plates. T is
normalized by (a) 6> and (b) K,/\/ na. Two-dimensional solutions (Sham, 1991) are also shown.

Ki(x5/t,v) = k(x3/t, WK astja—0. ®

In (9), K?® is the plane stress solution to the boundary value problem. [In traction boundary
value problems, the plane stress value of K in (9) coincides with the plane strain value
of K7° in (8).] The dimensionless function k in (9) is independent of any remote loading
conditions and in-plane dimensions. Its variation along the crack front for various Poisson’s
ratios is shown in Nakamura and Parks (1988). The function & is of order unity except
near the free surface (k — 0 as |x,/t| - 0.5 for v # 0) and peaks at mid-plane. Forv =0, k
is identically unity. For given in-plane geometry and loading, when relative plate thickness
t/a is neither “thick” nor “thin”, the through-thickness variation of K| increases with
decreasing thickness until reaching the thin plate limit (9) at sufficiently small values; say,
t/a < 0.1. Alternatively, the through-thickness variation tends to become more uniform as
thickness increases, effectively reaching the thick plate limit (8) at sufficiently large values;
say, t/a = 10.

The thickness-dependence of the T-stress distribution can be expressed in a similar
manner. When the thickness is large,

KZD
T(x3/t,v) = B —— = T ast/a— oo, (10)
na

where B?® is a dimensionless “‘biaxiality”’ parameter depending (as does K7°) only on in-
plane geometry and loading. Values of B?® have been tabulated for several crack
geometries (Larsson and Carlsson, 1973; Leevers and Radon, 1983 ; Cardew et al., 1984;
Kfouri, 1986 ; Sham, 1991).
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From considerations of superposition and dimensional analysis, we propose that, as
relative thickness diminishes in the boundary value problem posed, the through-thickness
variation of T-stress can be expressed as

Ki(xs/t,v) .

N

Here we again exploit the equivalence of the plane stress and plane strain two-dimensional
solutions for 7°°. In this sense, 77 represents the “remote” value which applies in the
plane stress field found at radii large compared to thickness ¢, but small compared to crack
length a. The function B"" represents the local biaxiality factor of a thin plate, which will
be more fully described below. Although we have motivated the functional form of (11)
from the perspective of small relative thickness, we might anticipate a broader range
of applicability since the thick plate result (10) is recovered as f — co at fixed in-plane
dimensions.

Figure 5 shows larger mid-plane T-stress in thinner plates under both tension and
bending loads. As the plate thickness increases, the normalized 7-stress decreases and
approaches the two-dimensional solution. The three-dimensional results nearly merge with
the two-dimensional solution for plates with /W > 0.1, aside from the slight differences
caused by the Poisson’s ratio effect shown in Fig. 3. However, the relatively strong effect
of increasing T-stress with decreasing plate thickness shown in Fig. 5 is perhaps unexpected,
especially considering that T is still markedly increasing at intuitively “small” thicknesses,
t/W < 0.001.

T(x3/t,v) ~ T™°+ B™n(x,4/t, v) 1y
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Fig. 5. Mid-plane value of T-stress as a function of plate thickness in edge-cracked plates. T is
normalized by (a) 6 and (b) Kuf\/ na. Two-dimensional solutions (Sham, 1991) are also shown.
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The explanation for this phenomenon lies in the inherent biaxiality parameter for a
“thin elastic plate” as considered by Nakamura and Parks (1988). They analysed a three-
dimensional domain of thickness ¢ and radius R >» t. They applied the in-plane traction
calculated from the plane stress fields of (1) (i.e. 633 = 0) at the outer radius R, with remote
amplitude K™ = K?°. Their solution provided the full three-dimensional fields within the
domain r < R. Although the remote plane stress K-field loading of the thin disk has no
applied T-stress (i.e. T*® = 0), on dimensional grounds we expect that locally there exists
along the thin plate crack front a T-stress distribution

Kl(x3/t7 V)

nt

T(x5/t,v) = B™™(x/t,v) ast/a—0, (12)

where from (9), the three-dimensional variation of local plane strain stress intensity factor
in the thin plate is given by Kj(x3/¢, v) = k(x,/t, v)K™, and the function B™"is the (inherent)
biaxiality parameter for a thin plate, independent of any loading conditions. Since the
remote plane stress field is also exact in the three-dimensional case for v = 0, B"°(x,/z,
0)=0.

We have applied the interaction integral to the thin plate solutions of Nakamura and
Parks (1988), and Fig. 6 shows the dimensionless biaxiality function B"™, At mid-plane T
increases with increasing v. The through-thickness variation of T'is somewhat stronger than
that seen in Fig. 3.

Returning to the thickness-dependence of mid-plane T-stress shown in Fig. 5, we see
that the superposition shown in (11) can indeed be treated as an approximate interpolation
for T applicable to cases when the plate is neither thick nor thin. With the use of (8)-(10)
and (12), the normalized T in (11) can also be expressed as

T(x4/t,v) t .
: L gy puinge iy ). (13)

K(GoitvJ/m Na

For a thick plate, the first term on the right-hand side of (13) dominates, while it vanishes
for a thin plate. In Fig. 7, using known calibrations of B?P-values for edge-cracked specimens
under tension and bending (Sham, 1991) and the mid-plane value of B**(0, v = 0.3) = 0.045
from Fig. 6, the approximate thickness-dependence of T at the mid-plane as given by (11)
or (13) is plotted for the relative thickness range 0.001 < #/a < 1. In the same figure, the
full-field solution [replot of Fig. 5(b)] is also shown. As expected, the accuracy of (13)
is very high for plates of small relative thickness. In the intermediate thickness regime
(0.01 < t/a < 1.0), the agreement with the full-field solution is also very good. We have
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Fig. 6. Variation of normalized T-stress along the crack front in a thin elastic plate.
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Fig. 7. Mid-plane variation of normalized T-stress in edge-cracked plates as a function of relative

plate thickness, ¢/a, showing the coincidence of biaxiality with B"™" under both tension and bend-

ing as t/a — 0. Dashed lines represent the approximate thickness-dependence of T-stress obtained
from (11).

also used (13) to approximate 7-stress with different Poisson’s ratio plates at various crack
front positions. The results show that even with the nearly incompressible plate (v = 0.499),
the difference, AT, between the full-field solution and the approximate T-stress always
satisfies [AT| < 0.05 (K,/\/;;), except at crack front positions very close to the free-surface.
Thus the approximation formula provides an excellent estimate of T-stress along the crack
front of through-cracked plates of any relative thickness.

The implications of thickness-dependence for the T-stress in three-dimensional
through-cracked plates would seem to be profound; as seen in Figs 5 and 7, geometries
having negative T-stress as calculated two-dimensionally (B*° < 0) can in fact develop
positive T-stress providing \/;/_& < ~ B"in/| 2P|,

4. SURFACE CRACK MODEL

4.1. Model

In order to test the interaction integral on a non-straight crack front, the T-stress
distribution of a surface crack is computed. The surface-flawed plate contains a semi-
elliptical shaped crack and is subjected to either remote tension or bending loads as shown
by a quarter model in Fig. 8. The dimensions of the plate, relative to plate thickness ¢, are
the half-height H/t = 8; the half-width W/t = 4; the mid-plane crack depth 4/t = 0.6; and
the surface crack half-length ¢/r = 2.25, resulting in surface crack aspect ratio of a/c = 0.24.
The parameter ¢ represents the crack front location along a semi-elliptical crack front by
measuring the angle to a corresponding point on an inscribed circle of radius g, as shown
in the figure. The quarter-model of finite element mesh is constructed with 4960 8-noded
linear elements. The computations are carried out for Poisson’s ratios of v = 0 and 0.3.

4.2, Computed results

Figure 9 shows the variations of normalized K; along the crack front. The results are
close to other previously published results; e.g. Raju and Newman (1979). The T-stress is
again computed along the crack front using the interaction integral. In this model, ¢;; is
taken as the local tangential strain along the crack front. In general, the computed results
show that the domain dependence of I over several different domains is somewhat greater
than that of J, although the determination of the accuracy or the domain dependence of [
is difficult when its value is close to zero (see the discussion in Section 3.2).

The T-stress normalized by ¢ is shown in Fig. 10(a). The change in T-stress distribution
attributable to the difference in Poisson ratio is smaller than the range of T along the crack
front at fixed v. In addition, there is a much greater range of T-stress values along the crack
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Fig. 8. Schematic of a quarter of a surface crack model under tension and bending. The location of
a point along the crack front is parametrically expressed by the angle ¢.

front under bending than under tension. We note that values near the free-surface (¢ > 70°)
may not be very accurate due to insufficient mesh refinement in that region. However, for
surface cracks of the current aspect ratio (a/c = 0.24), the physical extent of the crack front
within 70° < ¢ < 90° is much smaller than that within 0° < ¢ < 70°. Figure 10(b) shows T
normalized by KI/\/n>a, where K| is local stress intensity factor, as shown in Fig. 10(a).
With this normalization, the variation of T along the crack front is reduced, due to the
similar variations of K; and T along the crack front, as shown in Figs 9 and 10(a).

The T-stress distributions shown in Fig. 10 are in good agreement with those deter-
mined by Wang and Parks (1990). These authors analysed several surface crack geometries
using very detailed three-dimensional meshes, extracting 7 by subtracting the dominant
singular term from the numerically-computed crack front stress fields. They also applied
the simple line-spring model to obtain approximate distributions of 7. At the center line
(¢ = 0) of a tensile-loaded plate of this geometry having v = 0.3, Wang and Parks obtained
values of T/o® equal to —0.65 and —0.60 from the continuum and line-spring solutions,

20 —r——r——Tr—TrT—T T T T
I surface crack a/t = 0.8
r a/c = 0.24

K, / o"/ra

0.0 PV SR ST SR WY NUU SN NPT S SUN S S S T S S

00 300 60‘ 900
crack front (¢)

Fig. 9. Variation of local K along the crack front in a surface-cracked plate under remote tension
and bending loads. Results are shown for Poisson ratios of v = 0 and 0.3.
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Fig. 10. Variation of T-stress along the crack front in a surface-cracked plate. Values of T are
normalized by (a) ¢ and (b) Ky/\/ma.

respectively, while the current method gives —0.62. Similarly, for bending loading, Wang
and Parks obtained normalized 7-stress values of 0.51 (continuum) and 0.47 (line-spring),
while the current method gives 0.61. All three of the solutions show only a very slight
increase in 7 along most of the crack front (¢ < ~ 60°) for tension, and a sharp decrease
with increasing ¢ for bending, crossing zero at ¢ = 60°.

5. DISCUSSION

We have introduced a general, accurate method to compute the non-singular T-stress
along three-dimensional crack fronts from finite element solutions of moderate mesh
refinement. Previous studies, based on specialized numerical techniques of more limited
applicability, have presented T-stress solutions for various two-dimensional plate geome-
tries, crack lengths and loading conditions. In three-dimensional geometries, the value of
the T-stress is also influenced by the Poisson’s ratio as well as the relative plate thickness.

We have shown that the superposition of the two limiting solutions, the thick and thin
cases, gives a good approximation to the three-dimensional 7T-stress of a through-cracked
plate. An intriguing implication of the inherently positive biaxiality parameter of thin plates
suggests itself. As noted above, all such crack geometries develop positive T-stress at
sufficiently small relative thickness providing only that K; > 0. Cotterell and Rice (1980)
showed that, within a two-dimensional planar framework, straight-ahead mode I cracking
under positive T-stress was not stable with respect to small off-plane perturbations of the
crack tip. We presume that similar inferences could be made in a three-dimensional context
for off-plane perturbations of a segment of crack front, though precise calculations would
be required.

On the fact of it, such a phenomenon would suggest that there exists, effectively, a
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limiting relative thickness (or, for fixed thickness, a limiting crack extension) for which
straight-ahead mode I cracking is not stable, regardless of in-plane geometry and loading.
However, the inherently positive local T-stress we have identified is a three-dimensional
feature of planar cracks in thin plates, and it is not clear if and how such fields would be
altered as the scale of out-of-plane crack perturbation becomes significant with respect to
plate thickness. It is conceivable that the amplitude of the positive thin plate T-stress effect
could diminish with out-of-plane perturbation, so that the overall stability of the crack path
would remain determined by the sign of TP, as originally formulated by Cotterell and
Rice. These speculations would merit closer experimental and analytical study.
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APPENDIX

The interaction integral introduced in Section 2.2 may be generalized to cases where thermal strains and
body forces are present. For isotropic linear isotropic elastic materials with a constant thermal expansion rate,
the stress—strain relation is

_1+v

v
= e oy 2oudy+adl, (A1)

where « is the coefficient of thermal expansion and 0 is the temperature deviation from the reference value at
undeformed state. Under presence of body force, the equilibrium condition is stated as,

doy

3, +b; =0, (A2)

Here b; is the body force per unit volume.

Starting from the interaction integral shown in (3) and invoking the divergence theorem, the expression for
the interaction integral over a domain/volume can be expressed as

- ouy | Ou;\0g, L 04, a0 | Ouf
I(S) = JV(S) I:(O',vja—xk + (71 6xk)5_3cj_aijeij a—Xk + aa—xkoﬁ -—-b,» E 9 dv. (A3)

The derivation of (A3) is similar to the one given by Shih et al. (1986) for determining J in a thermally stressed
body. Once Iis determined, the T-stress is obtained using (7) and (5).
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